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LEITER TO THE EDITOR 

Branching processes in the ANNNI model 
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+ Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford, UK 
f Institut fur Festkorperforschung der Kernforschungsanlage, 5170 Julich, Federal Repub- 
lic of Germany 

Received 7 October 1983 

Abstract. The mean-field equations of the simple cubic A"N1 model are studied on finite 
lattices. The results are consistent with the sequence of distinct commensurate phases, 
(2k-13), k = 1,2,3,. . . ,springing from the multiphase point, found using low-temperature 
series expansions. Moreover, evidence for new structure combination branching processes 
is presented, which generate phases of type ((2'3)"(2'"'3)") or ((23')"'(23'")"), where 
1, m and n are integers. 

The axial next-nearest neighbour Ising (or ANNNI) model (Fisher and Selke 1980) is 
one of the simplest statistical mechanical models to exhibit complex spatially modulated 
phases. It is composed of spin-: Ising variables, Si = * l ,  situated on a regular d -  
dimensional lattice formed of ( d  - 1)-dimensional layers of coordination number q1 
normal to the z axis. Within the layers each spin is coupled only by nearest-neighbour 
ferromagnetic interactions, Jo>O. However, along the z axis, spins are coupled by 
competing nearest, J1 > 0, and next-nearest neighbour, J2 = - K J ~  < 0, interactions. The 
parameter K thus controls the degree of competition. 

The model is known (as reviewed by Bak (1982), Fisher and Huse (1982) and 
Selke (1983)) to form a low-temperature ferromagnetic phase for K <$, and a (2) 
phase for K > 4. At low temperatures, for d > 2 and 45, > J , ,  the wedge in the ( K ,  T )  
phase diagram between these two phases is filled by a countably infinite sequence of 
discrete commensurate phases, (2k-13), k = 1,2,3,. . . , springing from the multiphase 
point ( K = 4, T = 0) (Fisher and Selke 1980, 1981). (For applications of the techniques 
to ANNNI models in a field, see Pokrovskii and Uimin (1982 a, b), Smith and Yeomans 
(1982) and Uimin (1982, 1983).) (2k-'3) denotes a periodic structure, where ( k  - 1) 
pairs of lattice layers pointing (predominantly) two 'up' (Si = +1) and two 'down' 
(Si = -1) are followed by three layers all pointing (predominantly) in the same direction. 
Accordingly, the wavevector, q, varies at fixed temperature, with K in discrete steps, 
q k  = 7rk/(2k+ 1 )a ;  a is the lattice constant. 

On the other hand, close to the boundary of the modulated phase to the paramag- 
netic phase the wavevector is believed to change continuously with K ,  as has been 
shown using linearised mean-field theory (Elliott 1961), high-temperature series 
expansion (Redner and Stanley 1977, Oitmaa 1983), and in agreement with Monte 
Carlo results (Selke and Fisher 1979, 1980). 

To explore the region in between the discrete low-temperature phases of type 
(2k-'3> and the structures with continuously changing wavevector close to T,, one 
apparently has to rely upon approximate methods, in particular mean-field theories. 
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The results of previous such calculations can be summarised as follows. (a) Iterated 
mapping techniques (Jensen and Bak 1983) have suggested the existence of a definite, 
K-dependent, temperature below which incommensurate structures are of measure 
zero-in analogy with the breaking of analyticity investigated by Aubry (1981, 1983). 
(b) Finite lattice mean-field calculations (Bak and von Boehm 1980) found in addition 
to phases of the form (2k-'3) some different commensurate structures. 

However, these results, albeit very interesting, d o  not give a coherent description 
of that intermediate region. The purpose of this letter is to present results of a 
systematic finite lattice mean-field calculation. As a result, strong evidence is given 
for non-zero temperature branching processes which generate phases of the form 
((231)m(231+1)n) and ((213)m(2'+13)n), I ,  m, n, integers, and which proceed via a simple 
structure combination process. 

We  consider the mean-field equations (Bak and von Boehm 1980) of the simple 
cubic o r  tetragonal ANNNI model 

where p = l / k g T ;  M ,  is the magnetisation of the ith layer along the z direction. W e  
take Jo = J1. To determine the stable magnetisation pattern at  a given set of values K 

and k , T / J O  one compares the free energies of solutions to equations (1) with periodic 
boundary conditions for various lattice sizes, i.e. number of layers, N. The solutions 
were obtained iteratively. In principle, one  should consider all integers, N. using 
numerical routines with arbitrarily high precision. Obviously this is not feasible, and 
one has to  restrict the analysis to a reasonably chosen variety of lattice sizes. Previous 
studies (von Boehm and Bak 1979, Yokoi et a1 1981, Rasmussen and Knak Jensen 
1981, bttinger 1983) considered all lattice sizes up  to a certain maximal value, usually 
of the order of 20. Thereby one easily loses the long wavelength structures. Here,  
we suggest and carry out the following, different, self-consistent approach. W e  guess 
that at  low temperatures new phases a re  generated by a 'structure combination 
branching process', i.e. that two adjacent phases, (A) and ( B ) ,  produce the new phase 
( A B )  at a definite branching point. This process may be repeated, as one increases 
the temperature, to form more and more complicated commensurate phases ( (AAB) ,  
( A B B ) ,  (A3@, . . .). (If such a process continued indefinitely, one  would obtain a 
complete devil's staircase in Aubry's (1981) terminology.) Accordingly, we compared 
structures of the type (A"Bm), n, m integers, where A and B are  low-temperature 
phases known from the low-temperature series expansion. The  actual structures that 
we always compared are  (2k-13), k S 5 ,  arid the ones listed in table 1, consistent with 
assumed monotonicity in 4 with K at  fixed T. It would be, of course, desirable to 
include combinations of even higher order and larger values of k .  However, the 
corresponding analysis close to  the multiphase point is beyond the numerical precision 
available to  us (128 bits). 

The  results confirm the hypothesis of a structure combination branching process, 
see figure 1. The branching points of the combinations of lower order occur at  lower 
temperatures than the ones of higher order. In table 1, we list all the branching points 
that we have found. The corresponding phase diagram is depicted in figure 1. Note 
that the K scale is schematic. We observed up  to  three consecutive structure combina- 
tions, e.g. ((232)(23)2). It remains an open question whether this structure combination 
process (which might also be considered as a bifurcation) continues to  indefinitely high 
order, before the truly incommensurate structures may set in. It should be mentioned 
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Table 1. Branching temperatures for structure combination phases in the ANNNI model. 

Branching structure Branching temperature 

W 4 )  1.985 * 0.005 
(23’) 1.537*0.005 
(232(233)) 1.635 * 0.005 
(232) 0.851 925*0.000005 

(23(23’)) 0.882 * 0.005 
((23)223’) 1.075 * 0.005 
((23)2223) 0.95 r0 .05  
(23(2*3)) 0.66 * 0.02 

(23(23*)*) 1.0*0.1 

K I schematic I 

I + d 

P 0.8519L 0.85198 
k g  l l i ,  

852 0.854 0.856 0.858 0.E 
k ,  T I  l o  

IO 

Figure 1. The low-temperature phase diagram of 
the ANNNI model. The temperature axis is to scale, 
the K axis is schematic. 

Figure 2. The widths of the (233) phase against 
temperature. ( 6 )  gives an enlarged view near the 
branching temperature. 

that our data on the ( 2 k - ’ 3 )  boundaries confirmed quantitatively the low-temperature 
series results (Fisher and Selke 1981). 

We also addressed the question whether there is a characteristic asymptotic 
behaviour near the branching points. An example is shown in figure 2. One finds that 
the width, A, of the (233) phase (see figure 1)  vanishes asymptotically in a linear 
fashion, as one approaches the branching temperature, TB. Over a wide range of 
temperatures one obtains A -  A ( T -  TB) exp(-a/ kBT). Results of systematic studies 
on this asymptotic behaviour as well as finite lattice calculations on the ferromagnetic 
side, K <$, of the model, consistent with an apparently continuously changing wave- 
vector, will be published elsewhere (Duxbury and Selke 1983). 
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Summarising, we conclude that we have found evidence for a new structure combina- 
tion branching process at low temperatures (where mean-field theory is expected to 
be correct) in the ANNNI model. 

One of the authors (PMD) thanks the Institut fur Festkorperforschung, Julich, for 
their hospitality during the visit when this work was done, and the SERC in England 
for the award of a fellowship. 
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